The Unconditional Instability of Inflow-Dependent Boundary Conditions in Difference Approximations
نویسندگان
چکیده
It is well known that for a mixed initial-boundary hyberbolic system to be well-defined it is necessary to impose additional boundary conditions only on the inflow eigenspace of the problem. We prove the discrete analogue of the above concerning difference approximations to such a system; that is, imposing numerical boundary conditions which are at least zeroth-order accurate with an inflow part of the interior equations leads to unconditional instability.
منابع مشابه
Numerical Boundary Condition Procedures
In this paper we study the stability of finite difference approximations to initial-boundary hyperbolic systems. As is well-known, a proper specification of boundary conditions for such systems is essential for their solutions to be well-defined. We prove a discrete analogue of the above if the numerical boundary conditions are consistent with an inflow part of the problem, they render the over...
متن کاملSize-dependent Vibration and Instability of Magneto-electro-elastic Nano-scale Pipes Containing an Internal Flow with Slip Boundary Condition
Size-dependent vibrational and instability behavior of fluid-conveying magneto-electro-elastic (MEE) tubular nano-beam subjected to magneto-electric potential and thermal field has been analyzed in this study. Considering the fluid-conveying nanotube as an Euler-Bernoulli beam, fluid-structure interaction (FSI) equations are derived by using non-classical constitutive relations for MEE material...
متن کاملEFFECT OF BOUNDARY CONDITIONS ON LOCALIZED INSTABILITY OF THE SEMI-INFINITE ORTHOTROPIC PLATE
This paper is concerned with an investigation into the localized instability of a thin elastic orthotropic semi-infinite plate. In this study, a semi-infinite plate, simply supported on two edges and under different boundary conditions of clamped, hinged, sliding contact and free on the other edge, is studied. A mathematical model is used and a general solution is presented. The conditions unde...
متن کاملA Godunov-Ryabenkii Instability for a Quickest Scheme
We consider a finite difference scheme, called Quickest, introduced by Leonard in 1979, for the convection-diffusion equation. Quickest uses an explicit, Leith-type differencing and third-order upwinding on the convective derivatives yielding a four-point scheme. For that reason the method requires careful treatment on the inflow boundary considering the fact that we need to introduce numerical...
متن کاملAsymptotic Approximations of the Solution for a Traveling String under Boundary Damping
Transversal vibrations of an axially moving string under boundary damping are investigated. Mathematically, it represents a homogenous linear partial differential equation subject to nonhomogeneous boundary conditions. The string is moving with a relatively (low) constant speed, which is considered to be positive. The string is kept fixed at the first end, while the other end is tied with the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010